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Abstract: Change in a quantitative trait is commonly employed as an endpoint in two-wave longitudinal studies. For 
example, early phase clinical trials often use two-wave designs with biomarker endpoints to confirm that a treatment 

affects the putative target treatment pathway before proceeding to larger scale clinical efficacy trials. Power calculations 
for such designs are straightforward if pilot data from longitudinal investigations of similar duration to the proposed study 
are available. Often longitudinal pilot data of similar duration are not available, and simplifying assumptions are used to 

calculate sample size from cross-sectional data, one standard approach being to use a formula based on variance 
estimated from cross sectional data and correlation estimates abstracted from the literature or inferred from experience 
with similar endpoints. An implicit assumption of this standard approach is that the variance of the quantitative trait is the 

same at baseline and follow-up. In practice, this assumption rarely holds, and sample size estimates by this standard 
formula can be dramatically anti-conservative. Even when longitudinal pilot data for estimating parameters required in 
sample size calculations are available, sample size calculations will be biased if the interval from baseline to follow-up is 

not of similar duration to that proposed for the study being designed. In this paper we characterize the magnitude of bias 
in sample size estimates when formula assumptions do not hold and derive alternative conservative formulas for sample 
size required to achieve nominal power.  
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1. INTRODUCTION 

Quantitative traits are commonly employed as 

endpoints in phase II clinical trials. In Alzheimer’s 

disease, recent efforts have focused on changes in 

biomarkers as a means of studying disease 

progression and drug efficacy, and as an aid to 

diagnosis and early decision-making in the evaluation 

of clinical interventions for chronic, debilitating and 

degenerative disease [1-4]. The ongoing process of 

identifying and validating biomarkers for use as 

surrogate endpoints, and more generally the quality 

and informativeness of research outcomes derived 

from the analysis of such endpoints, require that these 

trials be adequately powered. 

Power and sample size calculations for two-wave 

(baseline and one follow-up) designs using quantitative 

endpoints are straightforward if pilot data from 

longitudinal investigations of similar duration to the 

proposed study are available. In this case the variance 

of change scores, 
2

d(t), can be estimated from pilot 
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data, and supplied to the usual two-sample normal 

approximation formula for calculating sample size 

requirements for a t-test of no treatment effect against 

a non-directional alternative hypothesis: 

nt =
2 d(t )

2 1 2( ) + 1 ( )
2

(t )
2

         (1) 

where nt is the number of subjects required per study 

arm for a trial of duration t, 
2

d(t) is the within-group 

variance of the change in measurements from baseline 

to follow-up for a study of duration time t, 
-1

(p) is the 

quantile function of the standard normal distribution,  

and  are the Type I and Type II error rates, and (t) is 

the magnitude of the between-group difference in mean 

change from baseline to follow-up time t that the 

investigator wishes to be able to detect with probability 

1 - . 

Longitudinal pilot data are required to estimate the 

variance term, 
2

d(t), in equation (1). Lacking 

longitudinal pilot data or published estimates, it may be 

possible to abstract related parameters from the 

literature for estimating 
2

d(t). For example, values of 

variance at baseline and at follow-up, and the 

correlation of baseline to follow-up, may be available in 

published reports. Calling the variance at baseline 
2

(0), 

the variance at follow-up 
2

(t), and the correlation 

between baseline and follow-up (0t), 
2

d(t) is then 

calculated as: 
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d t( )
2 = 0( )

2 + t( )
2 2 0t( ) 0( ) t( )           (2) 

and the value obtained from equation (2) can then be 

used in place of 
2

d(t) in equation (1).  

If 
2

(t) = 
2

(0), that is, if there is compound symmetry 

of the covariance matrix of the baseline and follow-up 

(time t) measurements, then equation (2) reduces to: 

d t( )
2 = 2 1 0t( )( ) 0( )

2
          (3) 

As was the case with equation (2), the result of 

equation (3) can be substituted directly into equation 

(1), but this is valid only when 
2

(t) = 
2

(0). 

Equation (3) is presented, for example, in Meinert 

[5] (equation 9.14), Lachin [6], Overall and Doyle [7], 

and Overall & Starbuck [8]. In all cases the formula is 

presented with no discussion of what the assumption 

that 
2

(t) = 
2

(0) implies about the data generating 

process, or of the consequences of making this 

assumption in error. This is potentially problematic, 

because applying equation (3) when compound 

symmetry does not hold can lead to dramatic 

underestimation of the required sample size. For 

chronic progressive disease in particular, persons tend 

to progress at different rates, so that trajectories of 

progression tend to fan apart and the variance of 

measurements of disease severity increase as the 

cohort is followed over time [9]. If the interval from 

baseline to follow-up is sufficient, there may be a 

substantial increase in variance from baseline to follow-

up and a substantial underestimation of required 

sample size by equation (3). 

A similar danger arises when the researcher has 

direct access to longitudinal pilot data or is able to 

abstract relevant parameters from a published 

longitudinal study, but the duration t of the planned trial 

exceeds the duration, s say, of the available pilot data. 

Here, again, if longitudinal trajectories fan apart, then 
2

d(s) < 
2

d(t) whenever s < t, and sample size estimates 

obtained by naïve use of 
2

d(s) in place of 
2

d(t) will be 

anti-conservative. In the absence of a model describing 

the functional dependence of the per-occasion 

variances and between-occasion correlations on the 

measurement time, no sample size formula is available 

in this scenario. 

In this paper we illustrate analytically and by way of 

example the potential magnitude of underestimation in 

sample size calculations by naively applying equation 

(3) when the assumption that 
2

(t) = 
2

(0) does not hold 

(Section 2). We also demonstrate that even when 

longitudinal pilot data are available for estimating 

parameters used in sample size calculations, these 

estimates and resulting sample size calculations can 

be biased if the interval from baseline to follow-up is 

not of similar duration to that proposed for the trial 

(Section 3). Section 3 will also derive conservative 

upper bounds on required sample size useful for 

sensitivity analyses when adequate pilot data are not 

available for planning a future trial. 

2. BIAS IN SAMPLE SIZE CALCULATIONS WHEN 
THE 

2
(t) = 

2
(0) ASSUMPTION DOES NOT HOLD 

Letting nt represent the true required sample size 

per arm for a study of length t and denoting the 

estimate obtained using equation (3) as nt
(3)

, for a given 

effect size and Type I and Type II error probabilities, 

the extent to which nt
(3)

 underestimates nt, expressed 

as a percentage of the true required sample size is 

given by: 

%Underestimation =100%
nt nt

3( )

nt
=100%

t( ) 0( )( ) t( ) 2 0t( ) 1( ) 0( )

0( )
2 + t( )

2 2 0t( ) 0( ) t( )

        (4) 

Note that 2 (0t) – 1  1, so that the numerator terms 

in equation (4) are always greater than zero, and hence 

nt
(3)

 underestimates the true required sample size, 

whenever 
2

(t) > 
2

(0). 

Example 

To illustrate, we present examples of sample size 

calculations for a hypothetical phase II clinical trial in 

Alzheimer’s disease. Longitudinal data excerpted from 

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

cohort study are used to inform power calculations. 

ADNI is a joint government, private pharmaceutical, 

and non-profit initiative to determine promising markers 

of early AD progression and aid researchers and 

clinicians in developing effective therapies. The ADNI 

cohort is a longitudinal observational study that is by 

design representative of subjects eligible for 

recruitment to Alzheimer’s disease treatment trials [10]. 

Baseline and 12-month follow-up data were accessed 

from this publically available dataset [10] on September 

29, 2009. Estimates of 
2

(0), 
2

(t), and (0t) for lateral 

inferior ventricular volume and for the Alzheimer’s 

Disease Assessment Scale cognitive subscale (ADAS-
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cog [11]), two potential endpoints for a phase II trial of 

an Alzheimer’s disease treatment, are summarized in 

Table 1. Subjects with an Alzheimer diagnosis at 

baseline and data at both baseline and 12-month time 

points were included in the calculations. The variance 

is larger at follow-up than at baseline for both 

outcomes, as expected for longitudinal measurements 

of a chronic progressive disease. The parameter 

estimates in Table 1 were used to calculate sample 

size to obtain 80% power to detect (t) equal to a 25% 

reduction of ventricular enlargement relative to that 

observed in the ADNI cohort placebo condition pilot 

data, and likewise to calculate sample size to obtain 

80% power to detect a 25% slowing of rate of 

progression on the ADAS-cog relative to placebo, using 

both the naïve but biased estimate of 
2

d(t) (equation 

(3)) and the appropriate estimate of 
2

d(t) (equation (2)). 

Sample size estimates resulting from naively using 

equation (3) to calculate 
2

d(t) are approximately 50% 

smaller than the sample sizes required to obtain 

nominal power as calculated using equation (2) (Table 

1). For example, naïve use of equation (3) to estimate 
2

d(t) in equation (1) would lead us to conclude that a 

sample size of 96 per arm would be sufficient to ensure 

power = 0.8 to detect a 25% reduction in the rate of 

ventricular volume increase, whereas the actual 

required sample size, derived using equation (2), would 

be 195 subjects per arm. For the ADAS-cog data, 

these values are 356 and 719, respectively. These 

sample calculations are for illustrative purposes only. 

Power calculations for an Alzheimer treatment trial 

involve additional considerations, including but not 

limited to calculating bootstrap confidence intervals 

about sample size estimates acknowledging the 

uncertainty in population parameters supplied to the 

power formula [12, 13]. 

3. POTENTIAL BIAS WHEN PILOT DATA ARE 
INCONSISTENT WITH PLANNED TRIAL DESIGN 

If researchers have access to pilot data or summary 

statistics from a study of comparable duration to the 

planned trial, a valid estimate of the required sample 

size can be determined using equation (2) to calculate 
2

d(t). Often, however, pilot data are from a study of 

duration s, with s < t. This mismatch in trial duration is 

significant because typically 
2

(s) < 
2

(t) when s is 

shorter than t, and therefore sample size calculations 

tend to be anti-conservative. Letting nt
[s]

 denote the 

estimated required sample size per arm calculated 

from equation (1) with 
2

d(s) used in place of 
2

d(t), the 

magnitude of underestimation expressed as a 

percentage of actual required sample size nt is given 

by: 

%Underestimation =100%
nt nt

s[ ]

nt
=100%

t( )
2

s( )
2 2 0( ) 0t( ) t( ) 0s( ) s( )( )
0( )
2 + t( )

2 2 0t( ) 0( ) t( )

        (5) 

While the specification of conditions that are both 

necessary and sufficient for equation (5) to take values 

greater than zero is somewhat more involved than was 

the case with equation (4), it can be shown, for 

example, that nt
[s]

 will be anti-conservative for data 

Table 1: Parameter and Sample Size Requirement Estimates for ADAS-cog and Ventricular Volume Endpoints, as 
Calculated from ADNI Pilot Data 

Endpoint 
Statistic 

ADAS-cog Inf. Lat. Ventricles 

Pilot Data Sample Size 163 149 

Baseline Mean 18.3 4.2 

12-Month Change 4.2 0.6 

2
(0) 38.6 4.3 

2
(12) 92.6 6.0 

(0,12) 0.68 0.98 

n12 719 195 

n12
(3)

 356 96 

%Underestimation 50.5% 51.1% 

Notes: Inf. Lat. Ventricles is the sum of the volumes of the left and right inferior lateral ventricles in cm
3
; 

2
(0) = Baseline variance; 

2
(12) = Month 12 variance; (0,12) 

= Baseline-to-Month 12 correlation; n12 = required sample size per arm to detect a 25% reduction in 12-Month Change with power = 0.8 and two-tailed significance 

level = 0.05; n12
(3)

 = estimated sample size per arm to detect a 25% reduction in 12-Month Change with power = 0.8 and two-tailed significance level = 0.05 as 
calculated by equation (3); %Underestimation = underestimation of the required sample size per arm by use of equation (3), expressed as a percent. 
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generated by the familiar mixed effects model with 

linear trajectories fanning apart over time and i.i.d. 

residual error, or whenever both: 1) 
2

(0) < 
2

(s) < 
2

(t) 

and 2) 0  (0t)  (0s) (Appendix).  

Lacking pilot data consistent with the planned trial, 

there are several alternative approaches. If longitudinal 

data with more than two waves of observation are 

available, then power calculations can be performed 

under the assumption of a linear mixed effects model 

with correlated random intercepts and slopes [12], a 

flexible yet parsimonious analytic framework for 

longitudinal data that is well-suited to situations where 

variances are expected to increase (and correlations 

are expected to decrease), as the study duration is 

extended. However, if only two-wave pilot data are 

available and the duration of pilot data observation is 

different (typically shorter than), the duration proposed 

for the planned trial, the variance components from the 

correlated random intercepts and slopes variant of the 

linear mixed effects model are not identifiable, and 

calculation of the required sample size per arm is not 

possible. Nonetheless, the linear mixed effects model 

can still be relied upon to motivate solutions for the 

required sample size per arm that are guaranteed to be 

conservative under certain conditions. We offer here 

two power formulas that provide conservative 

overestimates of required sample size when the 

duration of pilot data is less than the duration of the 

planned trial.  

Conservative Formula 1 

Under the linear mixed effects model, the variance 

of change from baseline to follow-up 
2

d(t) for a study of 

length t can be expressed as a function of the variance 

of change from baseline to follow-up 
2

d(s) for a study of 

length s and the mixed model residual error variance 
2

e as follows (Appendix): 

d t( )
2 =

t2

s2
d s( )
2 2

t2 s2

s2
e
2           (6) 

For t > s, the second term is greater than or equal to 

zero, and therefore: 

•  

d t( )
2 =

t2

s2
d s( )
2             (7) 

is an overestimate of 
2

d(t), and power calculations by 

equation (1) with 
• 2

d(t) used in place of 
2

d(t) will be 

conservative overestimates of required sample size to 

achieve power (1 – ). 

Conservative Formula 2 

Alternatively, under the linear mixed effects model, 

the variance of change from baseline to follow-up 
2

d(t) 

for a study of length t can be expressed as a function of 
2

d(s), 
2

(s) = the variance of the quantitative measure at 

follow-up time s, 
2

(0) = the variance at the baseline 

observation, and ab = the covariance of the random 

intercept and slope coefficients (Appendix): 

d t( )
2 = d s( )

2 +
t2 s2

s2
s( )
2

0( )
2( ) 2

t2 s2

s ab       (8) 

For ab > 0 and t > s the final term is greater than or 

equal to zero, and therefore: 

•• 

d t( )
2 = d s( )

2 +
t2 s2

s2
s( )
2

0( )
2( )          (9) 

is an overestimate of 
2

d(t), and power calculations by 

equation (1) with 
••2

d(t) 
used in place of 

2
d(t) will yield 

conservative overestimates of required sample size to 

achieve power (1 – ). Note that the solution is exact, 

i.e., 
••2

d(t) = 
2

d(t), when ab = 0. 

Since both equation (7) and equation (9) yield exact or 
conservative solutions for required sample size under 
the linear mixed effects model assumption when the 
covariance of the random intercept and slope 
coefficients is non-negative, the smallest sample size 
estimate of the two calculated sample sizes, i.e., the 

one using min [
• 2

d(t),
••2

d(t)], is to be preferred under 

these conditions. 

4. DISCUSSION 

Considerable costs can be incurred when time and 

resources are allocated to an otherwise well conceived 

but underpowered study. Investigators may therefore 

wish instead to opt for a conservative solution to the 

problem at hand, i.e., one that results in a trial with 

greater than nominal power. In the absence of 

longitudinal pilot data, there is little information and little 

recourse for powering longitudinal trials. We 

recommend against using equation (3) however, and 

rather suggest using equation (2) to estimate the 

variance for sample size calculations when balanced 

two-wave pilot data is available, because equation (2) 

requires you to explicitly acknowledge the unknown 

parameters and therefore provide estimates for these 

parameters to the sample size formula. For the case 

where longitudinal pilot data of length s < t are 

available, we have provided conservative formulas for 
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sample size calculation for trials of length t that are 

valid under the modest assumption that the data derive 

from a mixed effects model with linear longitudinal 

trajectories that are fanning apart. Anti-conservative 

trials that ignore these concerns risk unnecessary false 

negative findings and lost opportunities for drug 

development. 
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APPENDIX  

Conditions Under which 
2

d(s) Leads to Anti-

Conservative Sample Size Estimation 

When Data are Generated by a Linear Mixed Effect 
Model 

We begin by introducing notation for two-wave data 

generated by the mixed effects model commonly 

applied to longitudinal data from clinical trials and 

cohort studies. Let yi  be observations on some random 

variable of interest that follow the linear mixed effects 

model with bivariate normal random intercept and slope 

coefficients and i.i.d. residual error: 

yi = + + ai + bi + ei        (A1) 

ai
bi
~ N 0, a

2
ab

ab b
2

, ei ~ N(0, e
2 )       (A2) 

Here  and  represent the fixed intercept and slope 

terms (rather than the Type I and Type II error 

probabilities), respectively, ai and bi are their random 

counterparts for subject i, and the ei  are i.i.d. residual 

error terms specific to subject i at time . For two-wave 

data,  will typically only take on two values by design, 

e.g., zero at baseline and t at follow-up for a trial of 

length t, or zero at baseline and s at follow-up for a trial 

of length s. It follows from equations (A1) and (A2) that 

for any : 

( )
2 =Var yi{ }

=Var ai + bi + ei{ }

= a
2 + 2

b
2 + 2 ab + e

2

       (A3) 

Also, for any   0: 

d ( )
2 =Var yi yi0{ }

=Var bi + ei ei0{ }

= 2
b
2 + 2 e

2

       (A4) 

To prove that 
2

d(s) leads to anti-conservative 

sample size estimates under this model, simply note 

that by (A4) 
2

d(s) < 
2

d(t), and therefore nt
[s]

 calculated 

using 
2

d(s) in equation (1) will underestimate nt when s 

< t and 
2

b > 0. The 
2

b > 0 condition simply means that 

trajectories are fanning apart, as is typically observed 

in longitudinal studies of chronic, progressive disease.  

When 
2

(0) < 
2

(s) < 
2

(t) and 0  (0t)  (0s) 

To show that equation (5) is greater than zero, and 

hence that nt
[s]

 is anti-conservative, under the general 

conditions that 1) 
2

(0) < 
2

(s) < 
2

(t) and 2) 0  (0t)  (0s), 

we need to prove that the numerator of equation (5) is 

positive under these conditions, which is equivalent to 

showing that: 

s( ) + t( )

2 0( )

>
0t( ) t( ) 0s( ) s( )

t( ) s( )

       (A5) 
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The proof follows immediately by noting that, given 

the assumptions, the left-hand side of inequality (A5) is 

> 1, and the right-hand side of (A5) is  1. 

Derivation of Equation (6) 

Using the model and notation above, equation (6) 

follows by writing: 

d t( )
2 t2

s2
d s( )
2 = t2 b

2 + 2 e
2 t2

s2
s2 b

2 + 2 e
2( )

= 2
t2 s2

s2
e
2

     (A6) 

Derivation of Equation (8) 

Similarly, equation (8) follows by noting that: 

d t( )
2

d s( )
2 t2 s2

s2
s( )
2

0( )
2( )

= t2 b
2 + 2 e

2 s2 b
2 + 2 e

2( )
t2 s2

s2

a
2 + s2 b

2 + 2s ab + e
2( ) a

2 + e
2( )

= t2 s2( ) b
2 t2 s2

s2
s2 b

2 + 2s ab( )

= 2
t2 s2

s ab

     (A7) 
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